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In this paper we first present a panorama about geometrical rigidity and inextensional
displacements (also called infinitesimal bendings) for surfaces with kinematic boundary
conditions and for surfaces with edges (in the sense of folds or junctions). This theory is
fundamental for thin linear elastic shells, as it rules their asymptotic behavior when the
thickness tends to zero. This behavior enlights some difficulties encountered in numerical
studies of very thin elastic shells. Our approach is based on the introduction of a non-
classical space denoted by R(S) and related with inextensional displacements. It permits
us to obtain new results concerning developable surfaces and hyperbolic surfaces, with
one or two edges (most supposed to keep constant angle), including a theorem of rigid
edge when the edge is an asymptotic line of the surface. By applying these results, we
are able to exhibit a new example of sensitive problem for a shell with hyperbolic mean
surface and with two edges keeping constant angle. In the appendix, we give a non-
classical variant of Goursat problem for hyperbolic linear partial differential equations
system, used in the proof of a rigidity result.

1 Introduction

A thin elastic shell is an elastic body, the shape of which is nearly a surface. It is
deformed under the action of external forces supposed to be small in order to have
small deformation and to linearize with respect to the displacement.

The study of an elastic shell, in particular its modeling by finite element meth-
ods, poses some difficult problems when the thickness of the shell is ”very small”.
These difficulties are enlighted by the asymptotic behavior of a very thin elastic
shell, where the notion of geometrical rigidity plays a fundamental role.

It is known that the asymptotic behavior of a linear thin elastic shell, when the
thickness tends toward zero, depends essentially on the ability of the mean surface
of the shell to deform in an inextensional way, see [29] or [30]. When this is not
possible, one says that the mean surface is geometrically rigid or equivalently that
the shell is inhibited.

All along this paper, the notion of rigididity is understood in its geometrical sense
and is independent of the material or model of shell considered. We emphasize on
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this geometrical sense since rigidity is equivocal in a mechanical framework.
In the non-inhibited shell case (bending dominated case), the displacement field

is inextensional and the shell presents some great weakness under applied external
forces. This weakness can go unnoticed in numerical studies, see [1], [27], [7] and
[10]. This is a phenomenon referred as membrane locking.

Among the inhibited shell (or membrane dominated shell), one distinguishes the
well-inhibited shells, for which the limit problem is well-posed in a nice functional
space, whereas in the not well inhibited case, the solution can be very sensitive with
respect to the external forces, giving a so-called sensitive problem in the sense of
Lions and Sanchez-Palencia [22], which can be seen as an instability phenomenon,
see [20].

Actually, in the framework of Koiter’s linear model of thin elastic shells, a mod-
eling by finite elements methods exists and ”works”, see [3] for instance. But, in
order to obtain a good approximation, it appears that the mesh step of the nu-
merical scheme has to be, in some cases, as small as the thickness of the shell. A
possible reason of a numerical locking arises here: in applications, since computers
are limited in speed and memory, the mesh step is sometime taken too big for ”very
thin” elastic shells.

Thereby, the numerical difficulties we evocate indicates that a theoretical study
of the geometrical rigidity of the mean surface of the shell is then necessary in order
to have a good knowledge of its mechanical behavior.

————

The theory of inextensional displacements and geometrical rigidity of a surface is
classical. Many results about the subject has been compiled in celebrated ”Leçons
sur la théorie générale des surfaces” by G. Darboux, first published in 1894, [14].

Inextensional displacements are displacements that keep unchanged the intrinsic
length of the surface (in the linearized sense); they satisfy a linear first order partial
differential equations (P.D.E.) system in two variables we call bending system (it is
also called rigidity system). The fundamental property of the bending system, is
that its ”characteristics”∗coincide with the asymptotic lines of the surface.

About geometrical rigidity, the classical theory concerns essentially the elliptic
surfaces without boundary (ovoids) and more generally the convex surfaces without
any flat point. It is known that such surfaces are geometrically rigid, see [28] or
[35].

Concerning the cases of surface with boundary, the rigidifying effects of kine-
matic boundary conditions such as fixation or clamping are classical, see [35], but
for sake of completeness, we recall them in section 5.

Actually, the monograph ”Generalized Analytic Functions” by I.N. Vekua, [35],
contains many results of rigidity concerning surfaces without boundary such as
ovoids and surfaces of revolution. Vekua also proved some rigidity result of elliptic

∗In fact, it is the characteristics of a reduced form of the bending system, which can be expressed
in various local coordinates such as Cartesian coordinates or covariant coordinates.
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surfaces with edges, taking advantage of the theory of generalized analytic functions
(also called ”pseudo-analytic functions” by L.Bers [5]). But, this aspect of the
theory of inextensional displacement is specific to elliptic surfaces.

A surface with an edge can be considered as a surface constituted of two smooth
parts joined together along a curve. We assume all along this paper that along the
edge , the respective tangent planes of the two adjacent smooth parts do not coincide
and make an angle different from zero and π. We shall consider more particularily
the case of edges keeping the angle of edge invariant during the deformation (we
shall say keeping constant angle). The keeping constant angle hypothesis can be
justified, in the mechanical point of view, for shells that are made of one piece,
contrary to the shells that are folded, i.e. for which the elasticity property are
damaged on the fold. It has been proved in the case of plates by H. Le Dret [19],
see also [32] for some heuristic comments.

Up to our knowledge, it seems that no significant research have been made on
cases of hyperbolic or developable surface with one or several edges, where edges
are understood as folds or junctions of surfaces. In this direction, we found some
new results.

Our approach of the theory is based on a non-classical space denoted R(S)
developed in section 4. Introduced by the author in [8], the space R(S) is isomor-
phic to the space of inextensional displacement quotiented by the subspace of rigid
displacements (also called trivial bendings). The space R(S) will prove to be the
technical key to the proof of our new results of rigidity of surface with one or two
edges we exhibit in sections 6, 7, 8 and 9.

Actually, a fundamental tangential property of the elements of R(S) (proposition
4.1) allow us to describe in a practical way the condition of continuity and keeping
constant angle along an edge (proposition 6.3), which becomes somewhat complex
when expressed in usual covariant components of a displacement.

We study then (section 7) various surfaces with an edge. We exhibit some
surfaces rigidified by an edge, some non-rigid surfaces with an edge, in a somehow
systematical study.

One of the new result of this paper is given in section 8. In the particular case
of an edge keeping angle constant, if the curve of the edge is an asymptotic line of
a hyperbolic part of the surface, then the edge behave as a rigid curve (theorem
8.2). This theorem can be considered as a generalization of the familiat rigidity of
a straight edge.

We then consider surfaces with two edges, and obtain some new rigidity results
concerning developable and hyperbolic surfaces. In particular we prove the geomet-
rical rigidity of general hyperbolic surfaces with two keeping constant angle edges,
which join together at one point M and satisfying a condition, we call PLASP†: we
suppose there is no asymptotic line issued from M separating the edges (theorems
9.5, 9.6, 9.7), see figure 9. The proof of this last result is based on a uniqueness
theorem of a non-classical variant of Goursat problem for hyperbolic system, given

†From the french : Pas de Lignes Asymptotiques Séparant les Plis.
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in Appendix (theorem A.2).
In section 10, we recall some elements of asymptotic theory of thin elastic shells

and the difficulties of their numerical study. In particular, we recall the notion of
sensitive problem, for which we exhibit a new example involving three hyperbolic
surfaces joined together in two keeping angle constant and satisfying the PLASP
conditions.
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1.1 General notations

In this paper, Greek indices and exponents vary in the set {1,2}, Latin indices and
exponents vary in the set {1,2,3}, and the repeated index or exponent convention for
summation is used (Einstein’s convention). The Euclidean inner product, the vector
product and the Euclidean norm of vectors u, v ∈ R3 are denoted u.v, u∧v and |u|.
The vectors, vector fields, and vector spaces are denoted in bold characters: L2

denotes the space of square integrable real functions, while L2 denotes the space
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of square integrable vector functions. The norm of a square integrable function
u is denoted by ‖u‖L2 . The partial derivatives are denoted in index preceded
by a comma: ∂u

∂yα
= u,α. The classical Sobolev spaces are denoted by Hm (or

Hm, if it is a vector space). The spaces of continuous functions with continuous m-
order derivatives are denoted by Cm. The space of infinitely differentiable functions
(C∞) with compact support is denoted by D and its dual, the Distribution space,
is denoted by D′. The space of the admissible displacements is denoted by V. The
space of the inextensional displacements is denoted by G.

All along the paper, a surface will be defined by a map (Ω, r), where Ω is a
domain of R2, and r denotes the position vector.

2 Elements of theory of surfaces

The aim of this section is to recall some of the principal objects used in elementary
theory of surfaces, which is essential for the rest of this paper. We refer to various
manuals for a complete account of surface theory such as [18], [34] or [33].

Let E be the Euclidean space and let S be a surface in E, defined by the map
(Ω, r) where Ω is a connected open set of R2 and the position vector r is a C2

mapping from Ω into E. The parameters will be denoted by y1 and y2, r : (y1, y2) ∈
Ω 7−→ r(y1, y2) ∈ S.

Figure 1: A parameterized surface S.

The curves defined by r(yα = const.) are called coordinates curves of S and the
parameters (y1, y2) are called curvilinear coordinates. On each point of the surface,
the covariant basis a1,a2,a3 is defined by

aα = r,α =
∂r
∂yα

, a3 =
a1 ∧ a2

‖a1 ∧ a2‖
. (2.1)

We also define the coefficient

a = ‖a1 ∧ a2‖2 . (2.2)

As we suppose that the map (Ω, r) is sufficiently smooth, the tangent vectors a1

and a2 are uniquely defined. We also suppose they are never colinear, in order the
triplet a1,a2,a3 to be a basis of R3. As it is not orthonormal in general, neither
orthogonal, it is associated with a dual basis a1,a2,a3 called contravariant basis
and defined by ai.aj = δij , where δij denotes the Kronecker symbol.
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2.1 First and second fundamental forms on a surface

Let M be a point of the surface § and TM§ the tangent plane to § on M.

Definition 2.1. IM, the first fundamental form of § on M is the quadratic form
on TM§, the coefficients of which (of its matrix representation in the frame a1,a2)
are given by

aαβ = aα.aβ = aβ .aα = aβα. (2.3)

On each point of S, the first fundamental form is defined as the square of the
differential form dr. In this paper, it is denoted I=dr.dr. It can also be seen as the
restriction on the tangent plane of the Euclidean metric. It induces a metric on the
surface. I is also sometimes denoted ds2.

Definition 2.2. IIM, the second fundamental form of § on M is the quadratic
form on TM§, the coefficients of which (of its matrix representation in the frame
a1,a2) are given by

bαβ = a3.aα,β = a3.aβ,α = bβα. (2.4)

The two fundamental forms have geometrical interpretation. The former measures
the intrinsic length of the surface whereas the later measures the curvatures of the
surface.

The derivatives of the covariant (resp.contravariant) basis can be expressed in
the covariant (resp. contravariant) basis by the Gauss and Weingarten formulas

aα,β = Γ1
αβa1 + Γ2

αβa2 + bα,βa3

aα,β = −Γαβ1a
1 − Γαβ2a

2 − bαβa3

a3,α = b1αa1 + b2αa2 = −bα1a1 − bα2a2,
(2.5)

where the coefficients Γλαβ are the Christoffel’s symbols, given by

Γλαβ = aλ.aα,β , (2.6)

and where bαβ = bβλa
λα, with aλα = aλ.aα.

For any vector field u defined on the surface, with covariant components ui
(u = u1a1 + u2a2 + u3a3,), by virtue of (2.5), we can express the partial derivative
of u in the form

u,α = [u1,α − Γλ1αuλ − b1αu3]a1

+[u2,α − Γλ2αuλ − b2αu3]a2

+[u3,α − bλαuλ]a3.
(2.7)

2.2 Asymptotic directions and classification of surfaces

Consider now, on a point M of §, the function which associates to any unit vector
X, tangent to § on M, the real IIM(X). This function reaches its two extrema,
which we shall denote by k1 and k2, called principal curvatures of § on M. The
corresponding tangent directions X are called principal directions.
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Definition 2.3. A direction for which the function IIM vanishes is called an
asymptotic direction.

Definition 2.4. An asymptotic line of a surface S is a curve of S, the tangents
of which are asymptotic directions.

We can give a geometrical interpretation of an asymptotic line. Either they are
lines the osculating plane‡of which coincide with the tangent plane, either they are
straight lines.

As the second fundamental form II is a quadratic form, a direction X of TM§ is
an asymptotic direction if and only if X= (aa1 + ba2) is a root of the second order
polynomial

II(X ) = a2b11 + 2abb12 + b2b22.

Let Γ be a curve of the surface S, defined by

Γ = {(y1, y2) ∈ Ω/Φ(y1, y2) = 0}

A direction X = (a, b) is tangent to the curve if and only if aφ,1 +bφ,2 = 0, therefore
we have:

Proposition 2.5. Γ is an asymptotic line of S if and only if

(φ,2)2b11 − 2φ,1φ,2b12 + (φ,1)2b22 = 0. (2.8)

everywhere on Γ.

We see that the existence of asymptotic directions (and therefore the existence
of asymptotic lines) depends on the sign of the discriminant

∆ = (b12)2 − b11b22 = −det(IIM).

The notion of asymptotic direction induces the usual classification of a surface:

Definition and proposition 2.6. Let M be a point of S, then
(i) if det(IIM) > 0, there is no asymptotic direction at the point M, which is

said to be elliptic.
(ii) if det(IIM) < 0, there are exactly two distinct asymptotic directions at the

point M, which is said to be hyperbolic.
(iii) if det(IIM = 0)=0 and IIM 6= 0, there is a unique asymptotic direction at

the point M, which is said to be parabolic.
(iv) if IIM=0, the point M is said to be flat.

Accordingly, a surface will be said uniformly elliptic, hyperbolic or parabolic if
all the points of §are uniformly elliptic, hyperbolic or parabolic, respectively.
‡The osculating plane of a curve can be seen as the plane defined by three consecutive points, as
the tangent can be seen as the straight line defined by two consecutive points.
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Remark 2.7. The product K = k1.k2 of the two principal curvatures is the
Gaussian curvature of the surface on a point M. We have the classical formula
K = det(IIM)

det(IM) . As the Gaussian curvature has the same sign as det(IIM), hyperbolic
surfaces (resp elliptic surfaces) are often designed as surfaces with negative (resp.
positive) Gaussian curvature. 2

This classification has, of course, a geometric interpretation.

Figure 2: An elliptic point and a hyperbolic point.

In the case of an elliptic point, the positivity of the Gaussian curvature K means
that the principal curvatures are of the same sign; a neighborhood of M is entirely
at one side of tangent plane.

On the contrary, if K is negative, the principal curvatures are of opposite sign and
the surface go through the tangent plane where IIM vanishes, i.e on the asymptotic
directions.

The parabolic surfaces are the developable surface, that is to say they are ruled
surfaces such that the unit normal to the surface is constant along the generators.

A ruled surface is a surface such that it can be given by a map (Ω, r) of the form

r(y1, y2) = c(y1) + y2g(y1) (2.9)

where c defines a smooth curve, called directrix of the ruled surface, and g is a
vector field on c. The straight lines at y1 = const. are the generators.

With a map in the form (2.9), various coefficients of the surface simplify:

b22 = Γα22 = 0.

It is then easily seen that :

Proposition 2.8. Let S be a ruled surface given by (2.9), then K ≤ 0 and:
(i) S is developable if and only if b12 = 0, or equivalently K = 0.
(ii) The non-developable ruled surfaces are hyperbolic.

2.3 Special coordinates on a surface

A very useful property of surfaces is the possibility of choosing a map, in order
to get some simplification in the coefficients. This property is deduced from the
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classical reduction of a quadratic form (see [35] or [13]).

Proposition 2.9. Let S be a hyperbolic surface. There is a map, called asymp-
totic coordinate map, such that the coordinate curves coincide with the asymptotic
lines. In this map the coefficients of second fundamental form simplify:

b11 = b22 = 0 and b12 6= 0. (2.10)

Proposition 2.10. Let S be an elliptic surface, there is a map, called isometric-
conjugate coordinate map, such that the coefficients of the second fundamental form
simplify:

b11 = b22 =
√
aK and b12 = 0. (2.11)

More generally, we can choose, for any kind of surface, a map such that the
coordinate curves are orthogonal, see [18]: lemma 3.2.2:

Proposition 2.11. In any surface, there is a map called orthogonal coordinate
map, such that we have:

b12 = 0. (2.12)

3 Inextensional Displacement on a Surface.

In this section, we give the classical definition of inextensional displacements of
a surface. Inextensional displacements are essentially displacements that satisfy a
P.D.E system, called bending system, the ”characteristics” of which are the asymp-
totic lines of the surface. We emphasize on the notion of infinitesimal rotation, the
derivatives of which will prove to be fundamental in the sequel.

Let S be a surface defined by a map (Ω, r). The first fundamental form of S is
denoted by I=dr.dr. The surface is deformed with a displacement u, supposed to
be small in order to linearize with respect to u. The first fundamental form of the
deformed surface is

Ĩ = d(r + u).d(r + u).

Definition 3.1. A displacement u is said inextensional (or infinitesimal bending),
if it satisfies the bending system (also called rigidity system):

dr.du = 0, (3.1)

in other words if:
u,α.aβ + u,β .aα = 0. (3.2)

Actually, the bending system (3.2) is a P.D.E. system of three equations with three
unknowns (the three components of the displacement). Inextensional displacements
are displacements that leave the first fundamental form unchanged in the linearized
sense:

Ĩ− I = d(r + u).d(r + u)− dr.dr = 2dr.du + du.du.
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The linearized variation of the first fundamental form is twice the so called linearized
tensor of deformation and denoted by γ, usually expressed in covariant components:

γαβ =
1
2

[u,α.aβ + u,β .a,α] =
1
2

(uβ,α + uα,β)− Γλαβuλ − bαβu3. (3.3)

Let V be the space of admissible displacements, choosen to fit with the theory of
linear thin elastic shells, see section 10:

V = {v ∈ H1 ×H1 ×H2 + Kinematic boundary conditions}.

Definition 3.2. G = {v ∈ V/dr.du = 0}= {admissible inextensional displace-
ments}.

Definition 3.3. A displacement u is said rigid (or to be a trivial bending) if
there are two constant vectors C1 and C2, such that :

u = C1 ∧ r + C2. (3.4)

Rigid displacements are trivial solutions of the bending system. Furthermore they
are the only displacements that leave invariant both first and second fundamental
form, see the rigid movement lemma of Bernadou and Ciarlet [4].

Definition 3.4. Let S be a surface (resp. a portion of surface). S is said
geometrically rigid or inhibited if G on S is included in the set of rigid displacements.

3.1 The bending system.

The bending system (3.2) can be expressed in local coordinates. For a displacement
u, where (u1, u2, u3) denote its covariant components, developing with (2.7), the
bending system (3.2) can be rewritten as: u1,1 = Γλ11uλ + b11u3

u2,2 = Γλ22uλ + b22u3

u1,2 + u2,1 = 2Γλ12uλ + 2b12u3,
(3.5)

The linear first order P.D.E. system (3.5) is called covariant coordinates bending
system.

Classically, in the case of a plane surface, since all the coefficients of the surface
vanishes, one can see from the bending system, that the inextensional displacements
on a plane are the normal displacements (modulo rigid displacements).

We suppose now that S is not a plane neither it contains any flat points. Let
us choose an orthogonal coordinate map (see proposition 2.11). In such a map, we
have b12 = 0. It is then possible to ”reduce” the system (3.5) by ”eliminating” the
normal component u3. Combining the first and second equations of (3.5) we obtain:{

u1,2 + u2,1 = 2Γλ12uλ
b22u1,1 − b11u2,2 = (b22Γλ11 − b11Γλ22)uλ.

(3.6)
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The system (3.6) is called reduced bending system. We can see that, if the tangential
components u1 and u2 satisfying (3.6) are given, then the first or second equation
of (3.5) determine the normal component u3 in a unique way. The reduced bending
system (3.6) has the fundamental property:

Proposition 3.5. The characteristics of the reduced bending system (3.6) co-
incide with the asymptotic lines of S. In other words, the first order P.D.E. reduced
bending system (3.6) is elliptic or hyperbolic, whether the surface S is elliptic or
hyperbolic.

Proof. Let Γ = {(y1, y2)/Φ(y1, y2) = 0} be a curve of Ω (and therefore de-
termining a curve on S), where Φ is a sufficiently smooth function. Then, Γ is a
characteristic of the bending system (3.6) if Φ satisfies the equation:

det
[
Φ,1

(
0 1
b22 0

)
+ Φ,2

(
1 0
0 −b11

)]
= 0. (3.7)

In other words if
(Φ,1)2b22 + (Φ,2)2b11 = 0. (3.8)

We recognize, in (3.8), the equation (2.8) (with b12 = 0) which defines the asymp-
totic lines of the surface.2

Remark 3.6. For any surfaces given by a Cartesian map (r,Ω), in a fixed
orthonormal frame (e1, e2, e3):

r(y1, y2) = y1e1 + y2e2 + φ(y1, y2)e3,

if the u1, u2, u3 denote the Cartesian coordinates of a displacement u, the bending
system can be rewritten in Cartesian components : u1,1 + φ,1u3,1 = 0

u2,2 + φ,2u3,2 = 0
u1,2 + u2,1 + φ,1u3,2 + φ,2u3,1 = 0.

(3.9)

The system (3.9) has the particularity to be non-Kowaleskian (i.e. all curves are
characteristics). But it is ”equivalent”, in a certain sense, to a second order partial
differential equation satisfied by the vertical component u3 (see G. Darboux [14]):

φ,22u3,11 − 2φ,12u3,12 + φ,11u3,22 = 0, (3.10)

the characteristics of which coincides with the asymptotic lines of the surface. 2

Depending on the geometric nature of the considered surface, without any loss
of generality, one can take advantage of choosing adequate map in order to simplify
the bending system.
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In the case of a hyperbolic surface, one can choose an asymptotic coordinate
map (see proposition 2.9), in which the coefficients of the second fundamental form
simplify:

b11 = b22 = 0 and b12 6= 0.

The bending system (3.5) then reduces to: u1,1 = Γλ11uλ
u2,2 = Γλ22uλ
u1,2 + u2,1 = 2Γλ12uλ + 2b12u3.

(3.11)

One can see that the two first equations of (3.11) form a hyperbolic first order
partial differential system of two equations, under its so-called diagonal form. The
third equation of (3.11), determines the normal component of the displacement if
the tangential components are given.

In the case of an elliptic surface, one can choose an isometric conjugate coordi-
nate map (see proposition 2.10), in which the coefficients of the second fundamental
form simplify:

b11 = b22 6= 0 and b12 = 0.

The reduced bending system (3.6) becomes:{
u1,2 + u2,1 = 2Γλ12uλ
u1,1 − u2,2 = (Γλ11 − Γλ22)uλ.

(3.12)

Let then, w = u1 + iu2 and z = y1 + iy2, where i2 = −1, we have:

∂w

∂z
=

1
2

(
∂w

∂y1
− i ∂w

∂y2
) and

∂w

∂z
=

1
2

(
∂w

∂y1
+ i

∂w

∂y2
). (3.13)

The system (3.12) is then equivalent to the differential equation:

∂w

∂z
= Aw +Bw. (3.14)

Where
A = 1

2 [Γ1
11 − Γ1

22 + 2Γ2
12 + 2iΓ1

12 − iΓ2
11 + iΓ2

22]
B = 1

4 [Γ1
11 − Γ1

22 − 2Γ2
12 + 2iΓ1

12 + iΓ2
11 − iΓ2

22].

By definition, a solution of the differential equation (3.14) is a generalized analytic
function§which has many properties similar to most of analytic functions properties
(maximum principle, generalized Cauchy formulas, etc..). It is the theory developed
in the monograph of I.N. Vekua [35], used to obtain various rigidity results for
elliptic surfaces with a keeping constant angle edge. We shall recall one of them in
proposition 5.1.

We also indicate, that the bending system (3.6), in the case of elliptic surface, is
elliptic in Douglis-Nirenberg sense. This aspect have been developed in [15] where
some rigidity results are proved, similar to those found in Vekua’s monograph.
§Generalized analytic functions are also called pseudo-analytic functions, see [35] or [5] or even
[13].
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We end this subsection with a regularity property of inextensional displacements,
see also [15]:

Proposition 3.7. G ⊂ H2.

Proof. It is easily seen from (3.5), which gives u1,1 ∈ H1 u2,2 ∈ H1 and
(u1,2+u2,1) ∈ H1. Then u1,11, u1,12, u2,21, u2,22, (u1,21+u2,11) and (u1,22+u2,12)) ∈
L2. Consequently, we have moreover u1,22 and u2,11 ∈ L2. 2

3.2 Infinitesimal rotation field

Let §be a surface with a map (Ω, r) and u ∈ G be an inextensional displacement.
Classically, see [14], [33] or [35], u determines a unique vector field ω satisfying

du = ω ∧ dr,

or equivalently {
u,1 = ω ∧ a1

u,2 = ω ∧ a2.
(3.15)

More precisely, we have:

Proposition 3.8. Let u be an inextensional displacement, there is a unique
vector field, called infinitesimal rotation vector field¶associated to u, satisfying the
equations (3.15). Moreover, the rotation field satisfies necessarily

ω,1 ∧ a2 = ω,2 ∧ a1. (3.16)

We have the explicit expression, where the wi denote the contravariant components
of the rotation field ω: w1 = 1

a (u3,2 − bλ2uλ)
w2 = 1

a (u3,1 − bλ1uλ)
w3 = 1

a

[
1
2 (u2,1 − u1,2)− Γλ12uλ − b12u3

]
.

(3.17)

Proof. Let us first show the uniqueness of the associated rotation field. Let ω1 and
ω2 be two vector fields satisfying to (3.15) for a same inextensional displacement
u. (3.15) then implies

(ω1 − ω2) ∧ a1 = (ω1 − ω2) ∧ a2 = 0,
and thereby, we obtain ω1 − ω2 = 0.

Let us write now, the Schwartz equality u,12 = u,21. With (3.15), it gives
immediately the equality (3.16).

The explicit expression (3.17) is then obtained by developing, in (3.15), the par-
tial derivatives u,α in covariant components and the rotation field ω in contravariant
components. It suffices then to identify each terms in the contravariant basis. 2

¶We shall say rotation field, as there is no ambiguity.
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Remark 3.9. A vector field given by formula (3.17) appears in the expression
of the variation of the second fundamental form (see [4]). But, it is a rotation field
in the sense of (3.16) if and only if the corresponding displacement is inextensional.
2

Remark 3.10. It follows from (3.17) and proposition 3.7 that a rotation field
belongs to the Sobolev’s space H1. It gives easily the following estimates: there is
a positive constant C such that

∀u ∈ G,
‖ω‖L2(Ω) ≤ C‖u‖H1(Ω)

‖ω,α‖L2(Ω) ≤ C‖u‖H2(Ω). 2
(3.18)

Definition 3.11. The space W of rotation vector field on § is

W = {ω ∈ H1/ω,1 ∧ a2 = ω,2 ∧ a1}.

This last definition is justified by a reciprocal to the proposition 3.8:

Proposition 3.12. Let ω ∈ W be a rotation field on §, ω determines an
inextensional displacement u, which is unique modulo a rigid displacement. We
have the explicit expression, modulo a rigid displacement

u(y1, y2) =
∫ y1

0
ω,1(t, y2) ∧ [r(y1, y2)− r(t, y2)]dt

+
∫ y2

0
ω,2(0, s) ∧ [r(y1, y2)− r(0, s)]ds.

(3.19)

Proof. Let us first remark that a rotation field belongs, a priori, to the Sobolev
space H1. Therefore, the trace of its first order partial derivatives does not make
sense a priori. In fact, the expression (3.19) must be considered as the continuous
extension of the integral operator from L2 to L2. The notation of (3.19) is then
abusive, but not ambiguous.

Let ω be a rotation field and let u be a displacement satisfying the two equations
(3.15). Making the scalar product of the two equalities of (3.15) respectively with
a1 and a2, we immediately see that the bending system is satisfied by u. Thus, u
is inextensional.

Formally, the expression (3.19) is obtained by quadratures for smooth rotation
fields. It is then justified for all rotation fields in H1, as we said, by continuous
extension of the integral operator from L2 to L2. 2

Remark 3.13. The expression (3.19) is not unique (although, the inextensional
displacement is uniquely determined modulo a rigid displacement). One can choose
different paths and take, for instance:

u(y1, y2) =
∫ y1

0
ω,1(t, 0) ∧ [r(y1, y2)− r(t, 0)]dt

+
∫ y2

0
ω,2(y1, s) ∧ [r(y1, y2)− r(y1, s)]ds.

(3.20)

The independence of the ”quadrature” is insured by the compatibility equation
(3.16). It is even possible to combine (3.19) and (3.20) to obtain valid explicit
expression for complex form of Ω (non convex for instance, or with a hole). 2
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The last proposition induces some criteria of rigidity:

Proposition 3.14. Let § be a surface and let u be an inextensional displacement
on S, u is a rigid displacement if and only if the associated rotation vector field ω
is constant on S.

Proof. By definition, if u is rigid then ω is constant. Conversely, if the rotation
field ω is constant, the expression (3.19) immediately shows that the displacement
u is rigid. 2

The last rigidity criteria can be ”restricted” along a curve :

Proposition 3.15. Let Γ be a curve of §. Let u be an inextensional displacement
on S and let ω be its associated rotation field. If ω is constant along the curve Γ,
then u is rigid along Γ.

Proof. Without any loss of generality, we can choose a map (Ω, r) of § such
that the curve Γ is defined by the coordinate curve y2 = 0. Integrating the first
equation of (3.15) along y2 = 0 gives:

u(y1, 0) = ω ∧ [r(y1, 0)− r(0, 0)]. (3.21)

In other words, as ω is constant along the curve y2 = 0, (3.21) shows that u is rigid
on y2 = 0, i.e. on Γ. 2

Remark 3.16. The rigidity criteria along a curve of proposition 3.15 is sufficient
but not necessary in general. The expression (3.21) implies a rigid displacement on
the curve if and only if the component of ω, transverse to Γ, is constant. The
tangential component can be non-constant. The case of developable surface gives
an example: The generatrices behave as rigid lines but the corresponding rotation
field is not constant along them, see the proposition 4.9. 2

4 The Space R(S), Derivatives of Rotation Field.

We develop in this section the framework of a new approach of the theory of in-
extensional displacements. It consists on the introduction of a non-classical space,
denoted R(S). It is the key of the proof of various new results of rigidity concerning
hyperbolic and developable surfaces that we shall show in next sections.

In the expression (3.19), the first partial derivatives of a rotation vector field
determine uniquely (modulo a rigid displacement) an inextensional displacement.
Furthermore, one can express the rigidity criteria of the propositions 3.14 and 3.15
as a condition on the derivatives of a rotation field. These objects, first partial
derivatives of rotation field, constitutes the elements of the space R(§). They are
non-classical objects, although similar to the bending field of I.N. Vekua [35].
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The fundamental property of derivatives of rotation field is the following tan-
gential property:

Proposition 4.1. Let ω ∈W be a rotation field on surface S. Then the normal
component of first partial derivatives of ω vanishes. In other words, the differential
of ω is tangent to §.

Proof. It suffices to take the scalar product of the compatibility equation (3.16)
with a1 (resp. a2) to obtain: ω,1 ∧ a2.a1 = ω,2 ∧ a1.a1 = 0

=⇒ ω,1.a1 ∧ a2 = 0, (resp.) ω,2.a1 ∧ a2 = 0. 2

For any ω ∈W, let us introduce the new notation:{
w1 = ω,1
w2 = ω,2.

(4.1)

The equality (3.16) becomes:

w1 ∧ a2 = w2 ∧ a1, (4.2)

and the vector fields w1 and w2 must satisfy the integrability condition:

w1,2 = w2,1. (4.3)

Definition 4.2.
R(S) = {(w1,w2) ∈ [L2(Ω)]2 / w1 ∧ a2 = w2 ∧ a1 and w1,2 = w2,1}.

According to proposition 3.8, an inextensional displacement determines a unique
rotation field and therefore, a unique couple (w1,w2) of R(§). Let us denote by R
the linear mapping:

G R−→ R(§)
u 7−→ R(u) = (w1,w2).

According to proposition 3.14, an inextensional displacement is rigid if and only if
its associated rotation field is constant on S, i.e. if and only if R(u)=(0,0). In other
words, we have:

Proposition 4.3. The vector space R(§) is isomorphic with the quotient space
G/{rigid displacement}. Consequently, the surface § is geometrically rigid if and
only if R(S) is reduced to {(0, 0)}.

Remark 4.4. It is easy to see that the space R(§) is closed in [L2(Ω)]2. Fur-
thermore, according to remark 3.10, there is a positive constant C such that

‖R(u)‖[L2(Ω)]2 = ‖(w1,w2)‖[L2(Ω)]2 ≤ C‖u‖H2 ∀u ∈ G. (4.4)

Therefore, applying a Banach’s classical theorem, we see that R is bicontinuous and
there is a positive constant c such that

inf
v∈{rigid displ.}

‖u− v‖H2 ≤ c‖(w1,w2)‖[L2(Ω)]2 ∀u ∈ G. 2 (4.5)
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4.1 The derived bending system

According to the tangential property of proposition 4.1, the normal component of
elements of R(§) vanishes. This permits us to have relatively simple expressions in
contravariant components. If we denote wα = wλαaλ, developing (4.3) in covariant
components, gives[

wγ1,2 + Γγ2λw
λ
1

]
aγ +

[
b2λw

λ
1

]
a3 =

[
wγ2,1 + Γγ1λw

λ
2

]
aγ +

[
b1λw

λ
2

]
a3.

Identifying then, on each term of the covariant basis, we obtain a first order P.D.E
system, we call derived bending system:

w1
1,2 + Γ1

2λw
λ
1 = w1

2,1 + Γ1
1λw

λ
2

w2
1,2 + Γ2

2λw
λ
1 = w2

2,1 + Γ2
1λw

λ
2

b12w
1
1 + b22w

2
1 = b11w

1
2 + b12w

2
2.

(4.6)

On another hand, developing in (4.2) gives

wλ1 aλ ∧ a2 = wλ2 aλ ∧ a1 =⇒ w1
1[a1 ∧ a2] = w2

2[a2 ∧ a1],

and therefore we obtain
w1

1 + w2
2 = 0. (4.7)

With the relation (4.7), the derived bending system (4.6) is reduced to a P.D.E.
of three equations with three unknowns. But, no derivatives occurs in the third
equation of (4.6); it is a compatibility equation. Therefore, the system (4.6)-(4.7)
can be reduced to a first order P.D.E system of two equations with two unknowns.
The third equation of (4.6) with (4.7) can be rewritten as

b22w
2
1 = b11w

1
2 + 2b12w

2
2,

thus, the first two equations of (4.6) give the reduced derived bending system:

w1
2,1 + w2

2,2 = f1(w1
2, w

2
2)

b22w
2
2,1 − b11w

1
2,2 − 2b12w

2
2,2 = f2(w1

2, w
2
2), (4.8)

where f1 and f2 are two functions depending on the coefficients of the surface and
w1

2 and w2
2 (in an affine way); we shall not explicit them. The important point is

the nature of the P.D.E. system (4.8).
A curve Γ = {(y1, y2)/Φ(y1, y2) = 0} is a characteristic curve of (4.8) if and

only if

det

[
Φ,1

(
1 0
0 b22

)
+ Φ,2

(
0 1
−b11 −b12

)]
= 0,

that is to say, if
b22[Φ,1]2 − 2b12Φ,1Φ,2 + b11[Φ,2]2 = 0.

In last equation, we recognize the expression of equation (2.8). We have proved:
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Proposition 4.5. The contravariant components of an element (w1,w2) ∈
R(§) satisfy the derived bending system (4.6)-(4.7), equivalent to the reduced bending
system (4.8), the characteristics of which coincide with the asymptotic lines of §.

Therefore, the reduced derived bending system is hyperbolic (resp. elliptic) if
the surface is uniformly hyperbolic (resp. elliptic). This is naturally consistent with
the proposition 3.5.

4.2 Trace on a curve of elements of R(§)

The elements of R(S) belongs to the space L2, but although they are not defined
a priori, we shall see, in the sequel, that it is possible, in most of cases, to give a
sense to their trace on a curve.

Proposition 4.6. Let S be a hyperbolic surface and (w1,w2) ∈ R(S). If Γ is
a smooth curve, transversal to the asymptotic lines of S, then the trace of (w1,w2)
on Γ make sense in the space [L2(Γ)]2.

Proof. Let us choose an asymptotic coordinate map for §. With the simplifi-
cation b11 = b22 = 0 (see proposition 2.9), the third equation of (4.6) becomes

b12w
1
1 = b12w

2
2.

Combining with (4.7), we obtain

w1
1 = w2

2 = 0.

Consequently, the first two equations of (4.6) gives{
w1

2,1 ∈ L2(Ω)
w2

1,2 ∈ L2(Ω).

Therefore, according to classical trace theorem (see lemma A.1 in appendix), the
trace of w1

2 (resp. w2
1) make sense on smooth curves transversal to the curves

(asymptotic lines) defined at y1 = const. (resp. the asymptotic lines defined at
y2 = const.). 2

In the last proof, one can notice that if the curve Γ is an asymptotic line, say
defined at y2 = 0, then the trace of w2

1 still make sense on Γ. In other words, we
have:

Corollary 4.7. Let ω be a rotation field on a hyperbolic surface S. If a smooth
curve Γ is transversal to the asymptotic lines of S or if Γ is itself an asymptotic
line of S, then the derivative of ω along the curve Γ make sense in [L2(Γ)]2.

In the case of a elliptic surface, we choose an isometric conjugate coordinate map
(see proposition 2.10), with the simplifications b11 = b22 and b12 6= 0. The derived
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bending system (4.6)-(4.7) then reduces to:{
w1

1,2 − w1
2,1 = [Γ1

11 − Γ1
22]− w1

2 − [2Γ1
12]w1

1

w1
1,1 + w1

2,2 = [Γ2
11 − Γ2

22]− w1
2 − [2Γ2

12]w1
1

(4.9)

and {
w1

1 + w2
2 = 0

w2
1 − w1

2 = 0. (4.10)

Deriving the first equation of (4.9) with respect to y1 and adding it to the second
equation of (4.9) which we derive with respect to y2, we obtain

∆w1
1 ∈ H−1(Ω).

And in analogous way, we have

∆w2
2 ∈ H−1(Ω).

Here ”∆” denotes the usual Laplace differential operator. Thus, according to classi-
cal local regularity theorem for elliptic differential operator (see [25]), if the surface
is smooth enough (say C3), then w1

1 and w2
2 (and therefore w1 and w2) have the

regularity H1 in any open subset strictly contained in Ω. Consequently, the trace
of w1 and w2 on a curve Γ make sense in L2 if Γ is interior.

In the interesting case of a trace on the boundary of Ω, a theorem of trace on
the boundary for solution of elliptic differential operator (see [23], theorem 5.1, p.
168-171), permits to the trace to make sense in H−

1
2 (Γ).

Proposition 4.8. Let S be a uniformly elliptic surface of class C3, and let Γ be
a curve of S, possibly on the boundary of S. Then the trace on Γ of (w1,w2) ∈ R(S)
make sense in in [H−

1
2 (Γ)]2.

The case of a developable surface is considered in the sequel, where we also
derive the classical general explicit expression of inextensional displacement given
with a complete proof for inextensional displacements of G, using the framework of
R(S).

Let § be a developable surface, given by a map (Ω, r), in the form (2.9):

r(y1, y2) = c(y1) + y2g(y1).

For such a developable surface, we have the simplifications

b22 = b12 = 0, Γα22 = 0 and b11 6= 0. (4.11)

The derived bending system (4.6)-(4.7) then reduces to
w1

2 = 0
w1

1,2 = −2Γ1
12w

1
1

w2
1,2 = −w1

1,1 − 2Γ2
12w

1
1

(4.12)
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w1
1 + w2

2 = 0. (4.13)

We see that the second and third equations of (4.12) are ordinary differential equa-
tions. They are easily integrated and give w1

1 = ρ1(y1)E(y1, y2) = −w2
2

w2
1 = ρ2(y1) + F (y1, y2)

w1
2 = 0,

(4.14)

where the functions E(y1, y2) and F (y1, y2) are given by

E(y1, y2) = exp[−
∫ y2

0

2Γ1
12(y1, t)dt] and F (y1, y2) = −

∫ y2

0

[w1
1,1 − 2Γ2

12w
1
1](y1, t)dt.

The functions ρ1 and ρ2 are a priori arbitrary in L2, but in order the component
w2

1 to be in L2, ρ1 is necessarily in H1. The corresponding fields (w1,w2) ∈ R(§)
are {

w1 = ρ1(y1)E(y1, y2)a1 + [F (y1, y2) + ρ2(y1)]a2

w2 = −ρ1(y1)E(y1, y2)a2.
(4.15)

Applying the proposition 3.12, we have proved:

Proposition 4.9. Let § be a developable surface given by a map in the form
(2.9). For any inextensional displacement u ∈ G on §, there are two functions
ρ1 ∈ H1 and ρ2 ∈ L2, such that, modulo a rigid displacement, we have

u(y1, y2) =
∫ y1

0

[ρ1(t)c′(t) + ρ2(t)g(t)] ∧ [c(y1)− c(t) + y2g(y1)]dt. (4.16)

In the special case of a cone, we have furthermore:

Proposition 4.10. Let S be a cone containing its summit X given by the map
(Ω, r) with

r(y1, y2) = X + y2g(y1),

such that g and g′ are linearly independent. For any inextensional displacement
u ∈ G on §, there is a function ρ ∈ L2 such that, modulo a rigid displacement, we
have

u(y1, y2) =

[∫ y1

0

[ρ(t)g(t)dt

]
∧ y2g(y1). 2 (4.17)

Proof. According to proposition 4.9, an inextensional displacement u can be ex-
pressed in the form (4.16) and the derived bending system (4.6)-(4.7) reduces to
(4.9). But, as in X a displacement is reduced to a constant, we have

w1
1(y1, 0) = ρ1(y1) = 0.

Consequently: {
w1

1 = w2
2 = w1

2 = 0
w2

1 = ρ2(y1), (4.18)
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in other words w2 = 0 and w1 = ρ2(y1)a2. Therefore, (4.16) reduces to (4.17). 2

Remark 4.11. We see in (4.15) that on any directrix of a developable surface,
i.e. any curve transversal to the generators, the trace of elements of R(S) make
sense in L2. 2

5 Geometrical Rigidification of Surfaces by Kine-
matic Boundary Conditions.

The results of this section are classical, but for sake of completeness, we think useful
to recall them as the fundamental role of asymptotic lines of a surface is barely taken
into account in the literature of theory of thin shell.

Let us consider a surface S and let Γ be a part of its boundary. The fixation or
clamping boundary condition on Γ implies u = 0 on Γ. It induces trivially

u1 = u2 = 0 on Γ. (5.1)

The boundary condition (5.1) can be considered as a Cauchy data for the reduced
bending system (3.6) satisfied by any inextensional displacement. Therefore, the
uniqueness theorem of Cauchy problem for first order partial differential equation
system in two variable‖gives the local inhibition of the surface if Γ is transversal to
the characteristics of the reduced bending system (3.6), i.e. if Γ is transversal to
the asymptotic lines of S.

Proposition 5.1. Let S be a smooth surface fixed or clamped on a part Γ of
its boundary. If Γ is transverse to the asymptotic lines of the surface, then S is
geometrically rigid (or inhibited) in a neighborhood of Γ.

Depending on unique continuation theorems for solutions of Cauchy problem
(see [15] for the elliptic case), and thus depending on the geometry of S, the rigid
neighborhood can be precised:

Proposition 5.2. In the framework of proposition 5.1, if S is uniformly elliptic
then S is entirely rigid.

Proposition 5.3. In the framework of proposition 5.1, if S is developable, then
S is rigid in the domain B(Γ), constituted by the set of the generators of S passing
through Γ.

In the case of a hyperbolic surface, the rigidified part is determined by the
classical uniqueness theorem of Cauchy problem for hyperbolic first order differential
system in two variables.

‖Theorem of Holmgren for analytic surfaces or theorem of Carleman for smooth (C3) surfaces, see
[13] and [6]
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Figure 3: A partially rigidified developable surface, fixed on Γ.

Proposition 5.4. In the framework of proposition 5.1, if S is uniformly hy-
perbolic then S is rigid in the determination domain issued from Γ, i.e. the region
constituted by the set of the points for which the two issued asymptotic lines of S
pass through Γ.

Figure 4: A partially rigidified hyperbolic surface, fixed on Γ.

Remark 5.5. The last proposition shows the inhibition in a precise domain.
Yet, if the rest of the hyperbolic surface if free of any imposed condition, then S
generally admits some non-trivial inextensional displacements. To fix the ideas, let
us consider a hyperbolic surface with an asymptotic coordinates map (r,Ω) such
that Ω is a trapeze constituted by a rectangle R and a rectangular triangle T,
where with the exception of the hypotenuse Γ of T, all the boundary of R and T
are asymptotic lines of S.

Figure 5: The fixation on h induces the inhibition in T but not in R.

Consequently, if S is fixed on Γ, then according to last proposition, S is rigid in
T. However S is not rigid in R. It is due to the fact, that an arbitrary inextensional
displacement on the side r1 of R, it induces a Goursat data for the hyperbolic
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bending system (see theorem A.2 in Appendix), and thereby determines a non-
trivial inextensional displacement on R. 2

Remark 5.6. Propositions 5.1, 5.2, 5.3 and 5.4 are still valid if, instead of a
fixation condition on Γ, one imposes a rigid displacement on Γ. Indeed, if a rigid
movement u = c ∧ r + d is imposed on Γ, it suffices to apply propositions 5.1-5.4
to the displacement: ũ = u− c ∧ r + d, since one can see that ũ vanishes on Γ. 2

As we see the role of asymptotic line is essential in geometrical rigidity. Ac-
cording to last remark, fixing a surface along an asymptotic line is restrictive with
respect to the admissible inextensional displacement, but is not restrictive enough
to rigidify in general.

Using the framework of the space R(S), we can give the general expression of
the inextensional displacement on non-developable ruled (hyperbolic) surface, fixed
or clamped along a generator.

Proposition 5.7. Let S be a non-developable ruled surface given by a map of
the form (2.9):

r(y1, y2) = c(y1) + y2g(y1).

Let σ be the generator at y1 = 0, and let A(σ) be the part of S constituted of
asymptotic lines of S passing through σ. If S is fixed or clamped on σ, then for an
inextensional displacement u on S, there is a function ρ2 ∈ L2, such that we have
in A(σ):

u(y1, y2) =
∫ y1

0

[ρ2(t)g(t)] ∧ [c(y1)− c(t) + y2g(y1)]dt. (5.2)

Proof. Let u be an inextensional displacement on S, let ω be its associated rotation
field and R(u) = (w1,w2) ∈ R(S) (w1 = ω,1,w2 = ω,2). We are going to show
that w2 = 0 and w1 = ρ2(y1)a2 in A(σ).

As u ≡ 0 on σ and as a2 is constant along the generators, we also have:

w2 ∧ a2 = 0 along σ.

In other words, the derivative of ω along σ is tangent to σ.
Let us put aside for the moment, the map in the form (2.9) and consider an

asymptotic coordinates map of S, we still denote (abusively) (r,Ω), the curve σ
still being defined at y1 = 0. In such a map, with the simplification:

b11 = 0, b22 = 0 and b12 6= 0,

and the derived bending system (4.6)-(4.7)becomes:
w1

2,1 = −Γ1
11w

1
2 + Γ1

22w
2
1

w2
1,2 = Γ2

11w
1
2 − Γ2

22w
2
1

w1
1 = w2

2 = 0.
(5.3)

As the derivative of ω along σ is tangent to σ, i.e. w1
2 = 0 along σ, the third

equation of (5.3) induces then w2 = 0 along σ.
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On another hand, as S is ruled, the tangents to a generator coincide: a2,2 = ca2.
Therefore we have

Γ1
22 = a1.a2,2 = ca1.a2 = 0.

Consequently, the first equation (5.3) becomes

w1
2,1 = −Γ1

11w
1
2.

Since w2 = 0 along σ, resolving the last ordinary differential equation gives w1
2 = 0

in the domain of Ω defined with the asymptotic lines issued from σ, i.e. A(σ). Thus,
we have showed that w2 = 0 in A(σ).

Let us come back now, to the initial map in the form (2.9). In this map, we
have the simplification:

b22 = Γ1
22 = Γ2

22 = 0.

Then, the equation (4.7) of the derived bending system, w1
1 = w2

2, combined with
w2 = 0, gives w1

1 = 0 in A(σ).
Consequently, in A(σ), the derived bending system (4.6) reduces to:

w2
1,2 = 0.

In other words, w2
1 = ρ1(y1), or w1 = ρ1(y1)a2 where ρ1(y1) is arbitrary in L2.

Finally, according to proposition 3.12, we obtain the expression (5.2), by replac-
ing in (3.19). 2

6 Surface with an Edge, Criteria of Constant An-
gle.

Let § be a surface with an edge along a curve Γ. It is a surface constituted by
two smooth parts S+ and S−, joined together along their common curve Γ. On
every point of the edge Γ, the tangent planes of the adjacent parts S+ and S−, are
supposed to make an angle θ different from zero and π).

Figure 6: A surface with one edge.

Let u be a displacement on §. It will be said inextensional if its respective
restriction u+ and u− on S+ and S− are inextensional. In an analogous way, the
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associated rotation field ω is defined by the associated rotation field ω+ and ω− to
S+ and S−.

Classically, two kind of edge are considered:
• Simple edge: the continuity of the displacement is imposed, without any con-

dition on the variation of the angle θ

[u+ − u−] = 0 along Γ. (6.1)

• Keeping constant angle edge: the continuity of the displacement is imposed,
with the additional condition of the angle of the edge to remain constant in the
deformation:

[u+ − u−] = 0 and δθ = 0 along Γ. (6.2)

where δθ denotes the linearized variation of the angle θ.
One can notice that the continuity of the displacement does not induce the

continuity of the associated rotation field, but we have the following classical results
(see [35]):

Proposition 6.1. Let S be a surface with an edge along a curve Γ. Let u be an
inextensional displacement and ω its associated rotation field. The jump on Γ of ω
is tangent to the edge Γ. More precisely, we have :

[ω+ − ω−] = δθt along Γ, (6.3)

where t denotes the unit tangential vector to Γ.

Corollary 6.2. In the framework of preceding proposition, a displacement u
satisfies the constant angle condition if and only if:

[ω+ − ω−] = 0. (6.4)

Let us introduce now, a new criteria of the constant angle condition, first announced
in [8] and expressed for derivatives of rotation field (and therefore for elements of
R(§), essential afterwards.

Proposition 6.3. Let S be a surface with an edge along a non straight curve
Γ. Let ω be a rotation field on S. If the angle of edge θ is different from zero and
π, then

(i) The curve Γ is not an asymptotic line for at least one of the two adjacent
part of S.

(ii) The trace of the derivative of ω along the edge Γ (denoted DΓω) make sense
in H−

1
2 (Γ) (L2(Γ) in some cases).

(iii) If the edge Γ is keeping angle constant then DΓω is tangent to Γ.

Proof. As the edge Γ is not a straight line, if Γ is an asymptotic line of one of
the adjacent part, then the osculating plane of Γ coincide with the tangent plane to
S on each point of Γ. Consequently, as the edge makes an angle different from zero
and π, Γ cannot be an asymptotic line of both adjacent part. The first assertion is

25



proved. Thus, according to corollary 4.7, the trace of the derivative of ω along the
edge Γ make sense.

It is then valid to derive the constant angle condition (6.4) along the edge and
we obtain that the jump of the derivative of ω along the edge vanishes. But, as
the derivative of a rotation field is tangent to the surface, DΓω must belong to the
intersection of the respective tangent planes of the adjacent parts of §. As these
planes make an angle different from zero and π, on each point of the edge, DΓω is
tangent to the edge. 2

An interesting case, is the case of an edge keeping angle constant, the curve of
which is plane. We have the classical property:

Proposition 6.4. Let S be a surface with an edge keeping angle constant along a
non straight curve Γ. If Γ is plane, then, up to a rigid displacement, the restriction
to Γ of an inextensional displacement u is normal to the plane of Γ.

Proof. We give here a new proof, completing the one of [15].
Let us choose a map (r,Ω), such that the curve of edge Γ is given at y2 = 0.

Let ω be the rotation field on S, associated to u.
According to the proposition 3.13, we have the explicit expression on Γ, up to a

rigid displacement:

u(y1, 0) =
∫ y1

0

ω,1(t, 0) ∧ [r(y1, 0)− r(t, 0)]dt. (6.5)

Let P be the plane of the edge. It is clear that the expression [r(y1, 0) − r(t, 0)]
belongs to P, for every t. Moreover, according to proposition 6.3, the trace of ω,1
make sense and is tangent to the edge, and a fortiori tangent to P. Consequently,
the expression (6.5) shows the assertion. 2

Remark 6.5. In the framework of proposition 6.4, if one of the adjacent parts
of §, say S+, is uniformly hyperbolic, then the plane curve of edge is transversal to
the asymptotic curves of S+. Indeed, if Γ is an asymptotic line of S+, as it is non
straight, it would imply that the tangent planes of S+ all along the edge coincide,
and therefore that the second fundamental form vanishes, which is opposite with
the hyperbolic nature of S+. 2

7 Geometrical Rigidity of a Surface with an Edge.

In this section, we consider various cases of surface with one edge, considering the
(restrictive) effects of the edge on the admissible inextensional displacements. We
shall see that the effects are very different, depending on the configuration.

For the sake of simplicity, we will suppose all the smooth parts of the considered
surface to be simply connected.
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7.1 Case of a cone with an edge

Theorem 7.1. Let S be a surface with an edge Γ with an angle θ different from
zero and π. We suppose that one of the adjacent part of S is a cone S+ of summit X
(included in S+), for which Γ is transversal to the generators. If the edge is keeping
constant angle, then S+ is geometrically rigid.

Proof. Let us choose a map of the cone S+ of the form (2.9), such that the
edge is defined at y2 = const. Let u be an inextensional displacement and ω its
associated rotation field. We are going to show that ω is necessarily constant.

Figure 7: Two examples of cone with an edge.

According to (4.18) (see proposition 4.10), we have:

ω,1 = ρ(y1)a1 and ω,2 = 0.

Moreover, according to proposition 6.3, the constant angle condition gives

ω,1∧,a1 = 0 along Γ =⇒ ρ(y1) = 0.

Consenquently, ω,1 = 0 and ω,2 = 0. 2

Remark 7.2. In the theorem 7.1, the other adjacent part S− of S is arbitrary.
Depending on the geometry of S−, the rigidity extends according to remark 5.6.
On the other hand, if S− is also a cone (containing its summit), it is possible to
show, without any condition imposed on the variation of the angle of edge, that S
is quasi-rigid, i.e. the space of admissible inextensional is of finite dimension. More
precisely, S is inhibited up to a degree of freedom. 2

7.2 Case of a general developable surface with an edge

Proposition 7.3. Let S be a surface with an edge keeping constant angle on a curve
Γ. Let S+, one of the parts adjacent to Γ, be developable, and let Γ be a directrix
of it. Let u be an inextensional displacement on S. For a map of S+ of the form
(2.9), there is a function ρ1 ∈ H1(Γ) such that, up to a rigid displacement:

u =
∫ y1

0

[ρ(y1
1)c′(t)] ∧ [c(y1)− c(t) + y2g(y1)]dt on S+. 2 (7.1)

Proof. In a map of the form (2.9), as S+ is developable, we have seen in section
4, that every element (w1,w2) of the corresponding space R(§+) can be written
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under the form (4.15){
w1 = ρ1(y1)E(y1, y2)a1 + [F (y1, y2) + ρ2(y1)]a2

w2 = −ρ1(y1)E(y1, y2)a1.

On the other hand, according to proposition 6.3, the constant angle condition at
the edge gives

w1 ∧ a1 = 0.

Replacing in (4.15), we obtain, along the edge:

ρ2(y1)a2 ∧ a1(y1, 0) = 0,

which induces ρ2 = 0.
Consequently, replacing in (4.16) of proposition 4.9, we obtain the expression (7.1). 2

In the framework of last proposition, the developable surface may indeed admits
some non-trivial inextensional displacements.

It is sufficient, for any function ρ1 in (7.1), defining a non-trivial displacement on
S+, that the trace on the curve of edge of the associated rotation field, constitutes
an admissible Cauchy data for the corresponding derived bending system of S−

(the other adjacent part of S) or reciprocally. It is the case, for instance, if S− is
hyperbolic and Γ is transversal to its asymptotic lines.

If S− is also developable, the proposition 7.3 can also be applied on S−. Thus, if
no other kinematic condition is imposed on S, an arbitrary function ρ1 determines
uniquely an admissible inextensional displacement (satisfying the constant angle
condition at the edge).

7.3 Case of a hyperbolic surface with an edge

Proposition 7.4. Let S be a surface constituted by S+ and S− joined together
along a curve Γ, making an edge keeping constant angle with angle different from
zero and π. We suppose that both S+ and S− are hyperbolic and Γ is transversal to
their respective asymptotic lines. If there is no other condition imposed on S, then
the space of inextensional displacement G is of infinite dimension (§ is not rigid).

Proof. As the curve of edge is transversal to the asymptotic lines of S+ and
S−, it is a non-characteristic curve for the respective derived bending systems (for
any given maps of S+ and S−).

Let us choose for S+ and S−, asymptotic coordinates map (see proposition 2.9).
With the simplification (respectively on S+ and S−) of the second fundamental
form b11 = b22 = 0, the third equation of the derived bending system (4.6) and
(4.7) give (respectively on S+ and S−)

w1
1 = w2

2 = 0.

Let φ be a function describing the curve Γ = {(y1, y2) ∈ Ω/y2 = φ(y1)} (respectively
φ+ and φ− on S+ and S−). According to proposition 6.3, the constant angle
condition at the edges give (respectively on S+ and S−)

[w1 + φ′w2] ∧ [a1 + φ′a2] = 0. (7.2)
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In other words
w2

1(y1, φ(y1)) = φ′2w1
2(y1, φ(y1)). (7.3)

Thus, any arbitrary function in L2(Γ), will give respectively on S+ and S− an
admissible Cauchy data for the respective derived bending system of S+ and S−,
and thereby determines an inextensional displacement on §, according to classical
existence and uniqueness theorem of the Cauchy problem for hyperbolic system in
two variables. 2

Remark 7.5. An interesting case, where all the conditions of last proposition
are satisfied, is that of two hyperbolic surfaces joined along a non-straight curve
which is plane, see remark 6.5. 2

Remark 7.6. The proposition 7.4 remains true, if S− is developable, see above,
the case of developable surface with an edge. 2

Remark 7.7. In the proposition 7.4 and last remark, the hypothesis that the
curve Γ of edge is transversal to the asymptotic lines, is essential. Indeed, we shall
see in next section (theorem 8.2), that if Γ is an asymptotic line, and non straight,
then the edge rigidify, and moreover rigidify locally (at least) S− whatever is its
geometrical nature. 2

7.4 Case of an elliptic surface with an edge

Some results concerning elliptic surfaces with an edge can be found in [35] or even
[15], for which we refer. Netherveless, we would like to point out one result:

Theorem 7.8. Let S be an elliptic surface with boundary Γ joined together with
another arbitrary surface all along Γ, making an angle different from zero and π. If
the edge is keeping the angle constant, then S is rigid.

The principle of proof of theorem 7.8 is based on theory of generalized analytic
functions for which the constant angle criteria appears as a generalized Riemman-
Hilbert Problem. The rigidity follows then from the uniqueness and unique contin-
uation of a solution of such problem, see [35].

8 A Theorem of Rigid Edge.

We are now considering one of our new results which is a rigidity property of an edge
when the curve of the edge is an asymptotic line. It emphasizes the fundamental
role of asymptotic lines in theory of inextensional displacements and thereby in
theory of thin elastic shells.

To have an intuitive idea of the result we can think first of the case of a straight
edge. The rigidity of straight edge made by a folded plane is familiar, we can think
of a folded sheet of paper.
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Theorem 8.1. Let S be a surface with a simple edge making an angle different
from zero and π (no condition is imposed on the variation of the angle of edge). If
the curve of edge is a straight line, then the edge is rigid.

We refer to [15] for a formal proof of theorem 8.1. Actually, it is possible, in the
framework of this paper and using the space R(S), to give a rigorous proof, but we
shall not do it here.

Theorem 8.2. Let S be a surface with an edge (with angle different from zero
and π) along a curve Γ. We suppose that the edge is keeping angle constant, and
one of the adjacent part S+ of S is hyperbolic in a neighborhood of the edge; no
hypothesis is made on S−. If Γ is an asymptotic line of S+, then the edge Γ is
rigid.

Proof. The theorem 8.1 proves the rigidity of the curve of edge if it a straight
line. Thus, we can only consider the case where Γ has a non-zero curvature.

Let us choose for S+ an asymptotic coordinates map, in which the coordinates
curves are the asymptotic lines of S; we can suppose without any loss of generality
that Γ is defined at y2 = 0. In such a map, the coefficients of the second fundamental
form simplify (see proposition 2.9)

b11 = b22 = 0.

The third and fourth equations of the derived bending system (4.6)-(4.7) give (re-
spectively on S+ and S−)

w1
1 = w2

2 = 0.

On another hand, the constant angle condition at the edge gives (see proposition
6.3)

w1 ∧ a1 = 0 =⇒ w2
1 = 0,

in other words
w1 = 0 along Γ.

Consequently, according to the proposition 3.16, the edge Γ is rigid. 2

This result completes the proposition 7.4, where we saw that in the case of an
edge transversal to the asymptotic lines, the rigidity property is totally different.

Remark 8.3. In the framework of theorem 8.2, if Γ is not a straight line, it
cannot be a plane curve, since this should be in contradiction with the hyperbolic
nature of S+, see remark 6.5. 2

Remark 8.4. In the framework of theorem 8.2, if Γ is not a straight line, it
cannot also be an asymptotic line of S−. Indeed, as the respective tangent plane
to S+ and S− would coincide with the osculating plane of Γ, this should be in
contradiction with the hypothesis that the angle of edge is different from 0 and π.
2
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According to last remark, in the framework of theorem 8.2, if Γ is not a straight
line, it is then transversal to the possible asymptotic lines of S−. Therefore, as Γ
is rigid, according to remark 5.6 and proposition 5.1, we have immediately:

Corollary 8.5. In the framework of theorem 8.2, if the curve of edge has a
non-zero curvature and if S− is smooth enough, then S− rigid in a neighborhood of
the edge.

Remark 8.6. Of course, depending on the nature of S−, the rigidified neigh-
borhood can be specified. For instance if S− is uniformly elliptic, S− is entirely
rigid, see the remark 5.6 and the proposition 5.2. 2

Remark 8.7. We must keep in mind that if no other conditions are imposed
(as kinematic boundary conditions), the hyperbolic part is not rigid. This is due to
the fact that the rigidity of the edge induces a Cauchy data for the bending system
of S+, but on a characteristic curve. As this corresponding bending system is of
hyperbolic nature, the existence and uniqueness theorem for the Goursat problem
proves the existence of admissible inextensional displacements on S, see remark
5.5. 2

The framework of theorem 8.2 is remarkable, as it shows an example of surface
with an edge, geometrically rigid on one side of the edge and not rigid on the other
side.

9 Case of Rigidification by Two Edges Keeping
Constant Angle.

We saw, in the preceding section that, an edge was restrictive with respect to the
inextensional displacements. But, as we saw in some examples, some non trivial
inextensional displacements generally remain admissible on surface with an edge.
But, we can expect that the combinate effects of several edges could be ”rigidifying”,
when one alone was ”insufficient”.

We consider first some cases of ruled surfaces (developable case and non-developable
case), first announced in [9]. Then, we shall consider general hyperbolic surfaces
with two edges.

In the sequel, we say a surface S admits an edge along a curve Γ, if S is joined
along Γ, with another smooth (C2) surface, a priori unspecified, making an angle
different from 0 and π.

9.1 Case of a ruled surface admitting two edges

Let S be a ruled surface, defined by a map as in (2.9):

r(y1, y2) = c(y1) + y2g(y1).

31



The straight lines defined at y1 = const. are the generators, and the coordinates
curve defined at y2 = const. are the directrices.

As the developable case and non-developable cases are of different nature, we
consider them separately.

Theorem 9.1. Let S be a developable surface admitting two edges along curves
Γ1 and Γ2, transversal to the generators of S. For sake of simplicity, we suppose
that the boundary of S is constituted by generators and the curves Γ1 and Γ2. If
the edges are keeping the angle constant, then S is quasi-rigid. More precisely, S is
rigid up to one degree of freedom, at most.

Proof. Let us choose a map as in (2.9), r(y1, y2) = c(y1) + y2g(y1), such that
the edge Γ1 is defined as the coordinate curve y2 = 0. According to proposition 7.3,
there is a function ρ1 ∈ H1(Γ1) such that an inextensional displacement u can be
expressed in the form (7.1):

u =
∫ y1

0

[ρ(y1
1)c′(t)] ∧ [c(y1)− c(t) + y2g(y1)]dt on S+.

In particular, for any couple (w1,w2) ∈ R(S), we have{
w1 = ρ1(y1)E(y1, y2)a1 + F (y1, y2)a2

w2 = −ρ1(y1)E(y1, y2)a2,

where {
E(y1, y2) = exp[−

∫ y1

0
2Γ1

12(y1, s)ds]

F (y1, y2) =
∫ y2

0

[
[ρ1E(y1, s)],1 − 2Γ2

12ρ1E(y1, s)
]
ds.

Let us consider the second edge on Γ2, we can suppose it is defined by a function
ψ:

Γ2 = {(y1, y2) ∈ Ω/y2 = ψ(y1)}.

According to proposition 6.3, the constant angle condition imposes, along Γ2:

(w1 + ψ′w2) ∧ (a1 + ψ′a2) = 0,

i.e.
ψ′w1

1(a1 ∧ a2) + w2
1(a2 ∧ a1) + ψ′w2

2(a1 ∧ a2) = 0.

Thus, since w1
1 + w2

2 = 0, we have

2ψ′w1
1 + w2

1 = 0.

This induces an ordinary differential equation satisfied by the function ρ1:

a(y1)ρ1(y1) + b(y1)ρ′1(y1) = 0, (9.1)

where the functions a and b are given by{
a(y1) = 2ψ′(y1)E(y1, ψ(y1)) +

∫ ψ(y1)

0
[E,1((y1, s)− 2Γ2

12E(y1, s)]ds

b(y1) =
∫ ψ(y1)

0
E(y1, s)]ds.
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Then the function ρ1, and the admissible inextensional displacement u are deter-
mined, up to a degree of freedom. 2

Remark 9.2. In the framework of theorem 9.1, the developable surface is, in
many cases, actually rigid. It depends on the geometrical nature of the adjacent
surface. For instance, if one of the adjacent surface is hyperbolic, for which the
curve of edge is (possibly partly) an asymptotic line, see theorem 8.2. 2

Let us consider the non-developable (hyperbolic) case.

Theorem 9.3. Let S be a non-developable ruled surface, admitting an edge
keeping angle constant along a curve Γ and a second edge along a portion of gen-
erator σ (the angle of edge on σ can vary). Let A(σ) be the part of S constituted
by the asymptotic lines of S passing through σ, and let B(Γ) be the part of S con-
stituted by the generators at y1 = const. passing through Γ. We suppose moroever
that Γ ⊂ A(σ), then the part D = A(σ) ∩B(Γ) is rigid.

Figure 8: Different configurations of theorem 9.3

Proof. Let us choose a map of S in the form (2.9): r(y1, y2) = c(y1) + y2g(y1)
such that, Γ is the directrix at y2 = 0, and σ is defined at y1 = 0.

Let (w1,w2) ∈ R(S). According to theorem 8.1, and theorem 5.7, the edge σ is
rigid and there is a function ρ ∈ L2(Γ) such that we have on A(σ):

w1(y1, y2) = ρ(y1)a2

w2(y1, y2) = 0.

Consider now, the edge on Γ. According to proposition 6.3, the constant angle
condition imposes:

w1(y1, 0) ∧ a1 = 0.
Consequently ρ ≡ 0 in B(Γ), and therefore (w1,w2) = 0 in A(σ) ∩B(Γ). 2

Remark 9.4. In theorem 9.3, the two curves of edges σ and Γ does not neces-
sarily intersect, see figure 8.a. On the other hand, in some configuration it possible
that the two curves of edges intersect, but the rigidified domain is empty, see figure
8.b. In the case where Γ is not entirely included in A(σ), Γ∩A(σ) = Γ0, the theorem
9.3 remain valid in the corresponding domain A(σ) ∩B(Γ0). 2
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9.2 Cases of general hyperbolic surfaces with two edges

We shall prove a new rigidity result, which can be considered as a generalization
of theorem 9.3, although little different as we shall suppose that the two curves of
edges join together at a point. We shall use in an essential way, a variant of Goursat
problem for hyperbolic systems, which we shall develop in Appendix (theorem A.2).

The only other essential hypothesis we shall make, is to suppose there is no
asymptotic line issued from the point where the edges join together. We call it the
PLASP condition.

Figure 9: PLASP condition in asymptotic coordinates map.

We first see a special case, when the curves of edges are asymptotic lines:

Theorem 9.5. Let S be a hyperbolic surface admitting two edges on the curves
Γ1 and Γ2, joined together on the point M and satisfying the PLASP condition.
Moreover, we suppose that the edges are keeping angle constant, which are different
from zero and π. If the curves Γ1 and Γ2 are asymptotic lines of S, then S is rigid
in the determination domain defined by Γ1 and Γ2.

Proof. Let us choose an asymptotic coordinate map for S. Let (w1,w2) ∈
W. With the simplification b11 = b22 = 0, the derived bending system (4.6)-(4.7)
reduces to: 

w1
2,1 = −Γ1

11w
1
2 + Γ1

22w
2
1

w2
1,2 = Γ2

11w
1
2 − Γ2

22w
2
1

w1
1 = w2

2 = 0.
(9.2)

We see that first and second equation of (9.2) is a hyperbolic partial differential
system in diagonal form, the characteristics of which are the coordinates curves.

As the curves Γ1 and Γ2, are asymptotic lines we can suppose, without loss of
generality that they are respectively defined on y2 = 0 and y1 = 0.

According to the theorem 8.2, the constant angle condition induces that the
curves Γ1 and Γ2 are rigid. This implies that :

w2
1(y1, 0) = 0 and w1

2(0, y2) = 0.

In other words, the constant angle condition on the two edges gives a degenerate
Goursat data for the derived bending system (9.2).
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The PLASP condition insures us the possibility to suppose that the point of
S are only defined with y2 ≥ 0 and y1 ≥ 0. Therefore the classical uniqueness of
degenerate Goursat problem for hyperbolic system induces that (w1,w2) = (0, 0),
i.e. S is rigid in the determination domain defined by the edges. 2

Actually, the hypothesis of the curves of the edges to be asymptotic lines is not
essential.

Theorem 9.6. In the framework of theorem 9.5, we suppose that Γ1, one of the
two keeping angle constant edges, is an asymptotic line of S and the other edge Γ2

is transversal to the asymptotic lines of S. If the PLASP condition is satisfied by
Γ1 and Γ2 in S, then S is rigid in the determination domain of Γ2.

Proof. Let us choose an asymptotic coordinate map for S. Let (w1,w2) ∈ R(S).
In this map the derived bending system (4.6)-(4.7) reduces to (9.2), which is a
hyperbolic first order P.D.E system in diagonal form. As Γ1 is an asymptotic line of
S and Γ2 is transversal to the asymptotic lines of S, we can suppose, without loss of
generality, that they are respectively defined at y2 = 0 and y1 = φ2(y2). According
to theorem 8.2 and proposition 6.3, the constant angle condition then induces:{

w1(y1, 0) = 0 along Γ1[
φ′2(y2)w1 + w2

]
∧
[
φ′2(y2)a1 + a2

]
= 0 along Γ2.

In other words: {
w2

1(y1, 0) = 0
w1

2(φ2(y2), y2) = [φ′2(y2)]2w2
1(φ2(y2), y2). (9.3)

The PLASP condition insures that the points of S can defined by :

{y1 ≥ 0 and φ2 ≥ y2 ≥ 0}.

The problem (9.2),(9.3) is then a non-classical variant of Goursat problem, the
existence and unicity theorem of which is be proved in Appendix, theorem A.2. It
gives that the unique solution to (9.2),(9.3) is the null solution. 2

Last we see in this section, that the hypothesis of one of the edges to be asymp-
totic lines is not essential in theorem 9.6, provided the PLASP condition is satisfied
:

Theorem 9.7. In the framework of theorem 9.6, if the curves of edges are
transversal to the asymptotic line of S and if the edges Γ1 and Γ2 join on the point
M, satisfying the PLASP condition and making angles different from zero, then S
is rigid in a neighborhood of the point M.

Proof. Let us take again an asymptotic coordinates map for S. For any (w1,w2) ∈
R(S), the derived bending system (4.6)-(4.7) reduces to (9.2), which is a hyperbolic
first order P.D.E system in diagonal form.
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Let Γ1 and Γ2 be the curves of edge on S, and φ1 and φ2 be two functions
describing them :

Γ1 = {(y1, y2)/y2 = φ1(y1)} and Γ2 = {(y1, y2)/y1 = φ2(y2)}

As the curves Γ1 and Γ2 are supposed to be transversal to the asymptotic lines,
the functions φ1 and φ2 are invertible. In other words their first derivatives do not
vanish.

Let us choose M= (0, 0), so that we have φ1(0) = 0 and φ2(0) = 0.
In this framework, according to proposition 6.3, the constant angle condition on

the edges gives :{
w2

1(y1, φ1(y1) = [φ′1(y1)]2w1
2(y1, φ1(y1)) on Γ1

w1
2(φ2(y2), y2) = [φ′2(y2)]2w2

1(φ2(y2), y2) on Γ2.
(9.4)

We shall show now the uniqueness of the problem (9.2),(9.4) in a neighborhood of
the point (0,0), which amounts to prove the rigidity of S in a neighborhood of the
point M.

Let ΩT = [0, T1]× [0, T2] be a set defining a neighborhood of the point M.
As we have supposed the PLASP condition, we can choose the orientation of

the parameters such that {
φ1(y1) ≥ 0 in [0, T1]
φ2(y2) ≥ 0 in [0, T2]. (9.5)

We can suppose furthermore, without loss of generality, that the two functions φ1

and φ2 are invertible, in a neighborhood of 0.
Let A be the unbounded operator defined from :

D(A) = {(f1, f2) ∈
[
L2(ΩT )

]2
/f1,1 ∈ L2(ΩT ) and f2,2 ∈ L2(ΩT )}

with value in
[
L2(ΩT )

]2, given by A(f1, f2) = (g1, g2), such as : g1(y1, y2) =
∫ y1

φ2(y2)
[−Γ1

11f1 + Γ1
22f2]dŷ1 + [φ′2(y2)]2f2(φ2(y2), y2)

g2(y1, y2) =
∫ y2

φ1(y1)
[Γ2

11f1 − Γ2
22f2]dŷ2 + [φ′1(y1)]2g1(y1, φ1(y1)).

(9.6)

where the integral operators in (9.6) are defined as the continuous extension in L2

of integral operator defined for continuous functions.
It is clear that a solution of the problem (9.2)-(9.4) is a fixed point of the operator

A. We then show that A has a unique fixed point in ΩT .
Let (g1, g2) be a fix point of the operator A. From (9.6), we easily obtain the

estimates, with a positive constant C which only depends on coefficients of the
surface S, not necessarily the same at each occurrence ∗∗:

‖g1‖2L2(ΩT ) ≤ CT1

[
‖g1‖2L2(ΩT ) + ‖g2‖2L2(ΩT )

]
+ T1

[∫ T2

0

∣∣∣φ′2
2 (s)g2(φ2(s), s)

∣∣∣2 ds] . (9.6)

∗∗All the following estimates are satisfied for C = supΩ{|Γλαβ |}).
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But, according to lemma A.1, we have[∫ T2

0

∣∣∣φ′2
2 (s)g2(φ2(s), s)

∣∣∣2 ds] ≤ |φ′2|
[
‖g2‖2L2(ΩT )

T2
+ ‖g2,2‖2L2(ΩT )

]
.

Furthermore, as (g1, g2) is a solution of the system (9.2), we have

‖g2,2‖2L2(ΩT ) ≤ C
[
‖g1‖L2(ΩT ) + ‖g2‖L2(ΩT )

]
.

Thus, the inequality (9.6) becomes:

‖g1‖2L2(ΩT ) ≤ CT1

[
‖g1‖2L2(ΩT ) + ‖g2‖2L2(ΩT )

]
+ |φ′2|T1

T2

[
‖g2‖2L2(ΩT ) + CT1

[
‖g1‖2L2(ΩT ) + ‖g2‖2L2(ΩT )

]]
.

Analogously

‖g2‖2L2(ΩT ) ≤ CT2

[
‖g1‖2L2(ΩT ) + ‖g2‖2L2(ΩT )

]
+ |φ′2|T2

T1

[
‖g2‖2L2(ΩT ) + CT2

[
‖g1‖2L2(ΩT ) + ‖g2‖2L2(ΩT )

]]
,

so that:

‖g2‖2L2(ΩT ) ≤ CT2

[
‖g1‖L2(ΩT ) + ‖g2‖2L2(ΩT )

]
+ |φ′2||φ′1|‖g2‖2L2(ΩT )

or
‖g2‖2L2(ΩT ) ≤ 2CT2

[
‖g1‖L2(ΩT ) + ‖g2‖2L2(ΩT )

]
+ β‖g2‖2L2(ΩT ). (9.7)

Analogously

‖g1‖2L2(ΩT ) ≤ 2CT1

[
‖g1‖L2(ΩT ) + ‖g2‖2L2(ΩT )

]
+ β‖g1‖2L2(ΩT ), (9.8)

where
β = sup

y1∈[0,T1]

|φ′1(y1)| × sup
y2∈[0,T2]

|φ′2(y2)|.

One can notice that in the case where at least one of the edges is an asymptotic
line of S, we would have β = 0.

Let us denote now by p1 and p2, the slope of the curves defined by the functions
φ1 and φ2 at the point 0, and let p be their product:

p1 = φ′1(0)
p2 = φ′2(0)
p = p1 × p2.

As the two functions φ1 and φ2 are invertible, p is different from 0. But, it is
moreover different from 1. Indeed, if p = 1, it would mean that p1 = p−1

2 , in other
words that the edges join on M with a null angle.

Thus, if the chosen functions φ1 and φ2 give p > 1, it suffices to choose alternative
functions describing the curves of edges: φ̃1(y1) = φ−1

2 (y1) and φ̃2(y2) = φ−1
1 (y2),

in order to have the corresponding p < 1.
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Figure 10: Extension of the rigid domain in theorem 9.7.

Consequently, for some T1 and T2 sufficiently small, we obtain β < 1. That is
to say, for sufficiently small T1 and T2, the inequalities (9.7) and (9.8) are absurd
unless g1 = g2 = 0. 2

Remark 9.8. It is clear, in the configuration of theorem 9.7, that the rigidifi-
cation does not only hold in a small neighborhood of the point M. Depending on
the geometry of the curves of edges, the rigidification extends step by step. Fur-
thermore, according to theorem 9.6, the curves of edges are not necessarily totally
transversal to the asymptotic lines. 2

10 Application to Thin Linear Elastic Shells – A
New Example of Sensitive Shell

We have recalled in the introduction of this paper that the asymptotic behavior
of a thin elastic shell, the thickness of which tends to zero, depends essentially on
its geometrical rigidity. In this last section we give a more detailed overview of
this theory (we refer to [29], [30], [31],and [11]), where we see how some numerical
difficulties may appear in the study of very thin shells, such as membrane locking
in the case of non-inhibited shells and sensitive problem in the case of not-well-
inhibited shells. In the inhibited case, by applying the rigidity results of the former
section, we present a new example of sensitive shell, consisting of a hyperbolic mean
surface with two constant angle edges satisfying the PLASP condition.

V still denotes the space of admissible displacements, and G denotes the space
of admissible inextensional displacements (also called infinitesimal bendings).

In the framework of Koiter’s linear bidimensionnal model of thin elastic shells,
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the deformation energy bilinear form ae can be broken down into two separate
bilinear forms (see [4] or [29]):

ae = e3af + eam, (10.1)

where e3af denotes the bending deformation energy bilinear form and eam denotes
the membrane deformation energy bilinear form. Both af and am are independent
of the thickness e.

If the coefficients of membrane elasticity of the shell are denoted by Aαβλµ, we
have:

am(u,v) =
∫
S
Aαβλµγαβ(u)γλµ(v)ds

af (u,v) =
∫
S
Aαβλµραβ(u)ρλµ(v)ds, (10.2)

where γαβ is the linear variation of the first fundamental form, and ραβ is the linear
variation of the second fundamental form.

For each fixed thickness e > 0, the bilinear form ae is continuous and coercive in
the Sobolev space H1×H1×H2 (tangential components × normal component) with
a clamping condition on a part of the boundary, ††see [4]. Applying the Lax-Milgram
theorem, we have :

For every fixed thickness e > 0 , the static mechanical problem :{
Find a displacement u ∈ V such that
ae(u,v) = (F,v) ∀v ∈ V, (10.3)

has a unique solution for each given force F ∈ V′ applied on the shell.

Actually, the space G of inextensional displacements coincides with the kernel of
the membrane deformation energy bilinear form am, as by definition a displacement
u is inextensional if γαβ(u) = 0, see (3.3). It is the reason why, the asymptotic
behavior will depend on whether the mean surface of the shell is rigid or not.

10.1 Non-inhibited shell and membrane numerical locking

In the case of a non-geometrically-rigid surface (non-inhibited shell), the limit be-
havior takes place in the space G which is a closed subspace of V. It can be seen
by laying down the following scaling, with f independent of the thickness e:

u = uε, F = e3f and ε = e2. (10.4)

The problem (10.3) can be rewritten as :{
Find a displacement uε ∈ V such that :
ε−1am(uε,v) + af (uε,v) = (f ,v) ∀v ∈ V. (10.5)

When e (or ε) tends to zero, the problem (10.5) can be considered as a penalty
problem : the membrane deformations are penalized by the coefficient ε−1 compared
††Without such kinematic boundary conditions, the coercivenes of ae is established in V quotiented
by the set of admissible rigid displacement.
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to the bending deformations. This is quite coherent with our intuition, one can think
of a sheet of paper which is ”difficult” to stretch, but easy to bend. The deformation
tends to go to the chasm of minimization of energy : the kernel of the bilinear form
am, i.e. the space G of inextensional displacements. Classically, see [31], we have:

For each ε > 0, let uε be the unique solution of problem (10.5), then

uε −→ uo inV, (strongly)

where uo is the solution of :{
Find a displacement uo ∈ G such that :
af (uo,v) = (f ,v) ∀v ∈ G.

(10.6)

In other words, with a non-geometrically rigid surface (i.e. a non-inhibited shell),
it appears some important deformations for ”very small” applied external forces‡‡. It
means a weakness of the mechanical structure, which can go unnoticed by numerical
computations in case where the membrane numerical locking phenomenon occurs.

It can be understoodi, as in numerical studies (with exact integration schemes
for sake of simplicity), the continuous problem is replaced by a discretized, finite
dimensional one: {

Find a displacement uεh ∈ Vh such that :
ε−1am(uεh,v) + af (uεh,v) = (f ,v) ∀v ∈ Vh,

(10.7)

where Vh denote the finite dimension discretization of V with the mesh step h.
By analogy with the continuous problem, we have the following convergence

result:

For each ε > 0, let uεh be the unique solution of problem (10.7), then

uεh −→ uoh inV (strongly),

where uoh is the solution of :{
Find a displacement uoh ∈ Gh such that :
af (uo,v) = (f ,v) ∀v ∈ Gh,

(10.8)

where Gh = {inextensional displacements} ∩Vh.

In fact, in usual finite elements methods, if the mesh size is small enough, one
will obtain a good approximation of the exact solution of the mechanical problem
(10.3) as prove the convergence theorems of various finite element methods, see [3].
But, it appears that the mesh step has to be as small as the thickness.

Since computers are limited in speed and memory, in practice, the mesh step is
sometime taken too big with respect to i the appropriate mesh for very thin elastic
shells.
‡‡”very small” force in the sense of the scaling (10.4).
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Actually, the usual finite element methods involve polynomials, and it is shown,
in some case, that Gh contains no polynomial but zero and whereas some quasi-
inextensional displacements are solutions of problem (10.3), the numerical compu-
tation exhibits a nearly zero solution, see [10] and [7] for a further discussion on
this phenomenon.

10.2 Inhibited shell and sensitive problem

In the case of a inhibited shell, i.e. its mean surface is geometrically rigid, laying
down the scaling :

u = uε, F = ef , and ε = e2, (10.9)

the function f being independent of e, the problem (10.3) can be rewritten as:{
Find a displacement uε ∈ V such that :
am(uε,v) + εaf (uε,v) = (f ,v) ∀v ∈ V. (10.10)

We note that the bending term εaf , disappears when ε → 0. In fact, some second
order partial derivatives of the displacement occur in af , whereas it does not in
am. The problem (10.10) is then a singular perturbation problem when ε → 0.
Consequently, the limit behavior doesn’t hold in the same space, see [24].

Let the space Vm be the completed space of V for the norm am(v,v)1/2, we
have the classical result :

For each ε > 0, and f ∈ Vm′ let uε be the unique solution of problem (1.7) then

uε −→ uo inVm (strongly),

where uo is the solution of :{
Find a displacement u0 ∈ Vm such that :
am(u0,v) = (f ,v)Vm′/Vm ∀v ∈ Vm.

(10.11)

The problem (10.11) is well-posed, but in the space Vm, which strictly contains the
space V. In fact, in some cases, the space Vm can be so large it can even be not
contained in the space of distributions.

It is then conveniant to nuance the geometrical rigidity by the notion of well-
inhibition introduced in [29]:

Definition 10.1. A geometrically rigid surface is said well-inhibited if there
exist a positive constant C such that:

∀u ∈ V, ‖γ(u)‖L2 ≥ C ‖u‖V . (10.12)

A geometrically rigid surface is said non well-inhibited if it is not well-inhibited.
In other words, a surface is non-well-inhibited, if there exists some sequence of

displacements un such that: {
‖un‖V = 1,
‖γ(un)‖L2 −→ 0. (10.13)
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Such displacements are called pseudo-bendings and have been introduced in [16].
In the case of a well-inhibited surface, which amounts that the norm am(v,v)1/2

is equivalent to the norm H1 ×H1 × L2, the completed space Vm is contained in
H1 ×H1 × L2, see [12].

Actually, the hypothesis of well-inhibition is very restrictive. In fact, pseudo-
bendings always exist in hyperbolic or developable surface. Thus, developable or
hyperbolic surface are never well-inhibited. Moreover, it has been shown in [15]
that a surface with an edge is never well inhibited, neither is an elliptic surface with
a part of its boundary free of any kinematic conditions. The only known examples
of well-inhibited surfaces are ovoids and elliptic surface clamped or fixed all along
their boundary, see [15].

With a not well-inhibited shell, in some cases, the completed space Vm can be
not contained in the distribution space; the shell is then said sensitive, in the sense
of Lions and Sanchez-Palencia [21], [22].

By duality, it means that the space D of infinity smooth functions with compact
support is not contained in the dual space Vm′.

This means that for a given solution u0 of problem (10.11) with an external
force f0, the ”approximated” problem (10.11) with f0 + δf as external force, can
have no solution for some δf ∈ D but δf /∈ Vm′

; it is a instability phenomenon. In
other words, numerical computations are practically unreliable since such studies
are subject to approximation (of the data), see [20].

There is an example of sensitive problem given in [21], in the case of an elliptic
surface, the boundary of which is constituted by two distinct closed curves (circles
like), clamped or fixed on one of these curves, and the other free of conditions. In
the framework of section 9 of this paper, we give now a new example of sensitive
problem. It has been found in collaboration with E. Sanchez-Palencia.

Let us construct S, a surface given by a map (Ω, r), constituted by three regular
hyperbolic parts H, H1, H2, joined together along curves Γ1 and Γ2 making two
edges with angles different from 0 and π.

Γ1 = H ∩H1 and Γ2 = H ∩H2

We suppose that the two edges are keeping constant angle and are joined together
on a unique point M, as in the figure:

Figure 11: A surface S constituted by 3 hyperbolic surfaces joined together.

We suppose furthermore that in H the PLASP condition is satisfied by the edges
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Γ1 and Γ2. Thus, according to theorem 9.7, the part H is rigid in a neighborhood
of the point M.

We impose now the two edges Γ1 and Γ2 to be transverse to the asymptotic lines
of H. Consequently, according to remark 9.8, H is entirely rigid if it is included in
the determination domain issued from the edges Γ1 and Γ2.

Last, we suppose that the edges Γ1 and Γ2 are respectively transversal to the
asymptotic lines of H1 and H2. Then, we choose H1 and H2 such that they are
respectively contained in the determination, domain issued from the edges Γ1 and
Γ2, in order to have a totally geometrically rigid surface S.

Proposition 10.2. Let S be the three hyperbolic parts surface constructed as
above, so that it is geometrically rigid. Then the associated problem (10.11) is
sensitive.

Proof. We shall exhibit a sequence of displacements of V such that it is a
Cauchy sequence in the space Vm, and therefore have a limit in Vm. We then see
that this sequence does not converge in the sense of distributions.

Let the space Vl be the completed space of V for the norm associated to the
Hilbert space H1 ×H1 × L2. We obviously have

V ⊂ Vl ⊂ Vm,

with dense imbeddings.
It is sufficient then, in the announced process, to take a sequence in Vl instead

of a sequence in V.
On the edge Γ1, the continuity of the displacement and the constant angle

conditions are {
uH = uH1

δθ1 = 0, (10.14)

where uH (resp. uH1) denotes the restriction on H (resp. on H1) of a displacement
u of the surface, and δθ1 is the linearized variation of the angle made at the edge
Γ1.

In analogous notation, on the edge Γ2, the continuity of the displacement and
the constant angle conditions are {

uH = uH2

δθ2 = 0. (10.15)

Let us choose now a covariant basis which is orthonormal along the curve Γ1, as
done in [15], where the component u2 denotes the component tangent to the curve
of edges. The conditions of constant angle (10.14) becomes:

uH1
2 = uH2
uH1

3 = 1
2 [tan(θ1).(uH1

1 + uH1 )]− cot(θ1).(uH1
1 − uH1 )

uH3 = 1
2 [− tan(θ1).(uH1

1 + uH1 )]− cot(θ1).(uH1
1 − uH1 )

uH1
3,1 − uH3,1 = bH1αu

H
α − b

H1
1α u

H
α .

(10.16)

We shall take advantage in the sequel of the fact that in the completion process in
Vl and therefore in Vm, a condition involving the trace of the normal component
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u3 does not make sense anymore and therefore disappear. In Vl the only conditions
of (10.16) that make sense are:

uH1
2 = uH2 . (10.17)

We recall that a displacement is inextensional if it satisfies the bending system, i.e.
if the bilinear form am vanishes on it.

Consider now the parts H and H2. According to proposition 7.4 applied on Γ2,
it is possible to define a non-trivial displacement on H and H2 and satisfying the
conditions (10.15).

Let us consider the edge Γ1. According to the existence and uniqueness theorem
for the Cauchy problem of hyperbolic system, it suffices to impose in Γ1:{

uH1
2 = uH2
uH1

1 is choosen arbitrarily,
(10.18)

to obtain a non trivial inextensional displacement on H1 and satisfying the condition
(10.17).

Thus, we have constructed a non-trivial inextensional displacement u on S
(which is not admissible in V!) satisfying to the condition (10.17) on Γ1 and (10.15)
on Γ2.

A priori uH1
1 is unspecified on Γ1, but we choose it now such that the jump of

the displacement on Γ1 is normal to the part H1, as it is possible since the edge
makes an angle different from zero and π, see figure 8.

Figure 12: A transverse view of edge Γ1.

Let now K be a non-empty compact included in H, as u is non-trivial, there is
a function φ ∈ D such that

< u, φ >=
∫
K

u.φ 6= 0. (10.19)

Let us perturbate the displacement u with a displacement field v0. We choose v0

such that v0 vanishes on H and H2 (except on the point M) and such that its
tangential components vanish on H1. In other words, we perturbate u only on H1

by its normal component.
We choose v0 such that the continuity condition for u + v0 is satisfied along Γ1.

It is possible since we constructed the displacement u such that its jump on Γ1 is
normal to H1. In addition, we must verify the fourth condition of (10.16) on Γ1

and this may be done easily by choosing appropriately v0
3,1.
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Thus, the displacement u + v0 satisfies the continuity and the constant angle
conditions both on the edges Γ1 and Γ2.

We construct then the sequence of displacements :

vn = 1Kn × v0, (10.20)

where 1Kn is the indicatrix function on the set Kn. The sequence of sets Kn are
neighborhoods of Γ1 included in H ∪H1 such that:

Kn+1 ⊂ Kn and |Kn| = o

(
1
n

)
. (10.21)

It is clear that each function u + vn satisfies the continuity and constant angle
conditions both on the edges Γ1 and Γ2. We then have constructed a sequence of
Vl ⊂ Vm.

As v0 is reduced to its normal component, we have:

‖γ(u + vn)‖L2(Ω) = ‖γ(vn)‖L2(Ω) ≤ |Kn|‖γ(v0)‖L2(Ω).

Thus,

‖γ(u + vn)‖L2(Ω) ≤ o
(

1
n

)
. (10.22)

In other words, u + vn is a Cauchy sequence in the space Vm. So that, if Vm, is
included in the distribution space D′, then, we would have for any function ψ ∈ D:

< u + vn, ψ >n→∞−→ 0. (10.23)

But, for any n sufficiently large, we have:

K ∩Kn = ∅,

thus, for any n sufficiently large, we have:

< u + vn, φ >=< u + φ >6= 0,

which is in contradiction with (10.23). 2

We give, in this appendix, an existence and uniqueness theorem for a variant of a
Goursat problem on a hyperbolic linear P.D.E. system with two variables, used in
the proof of theorem 9.6.

But, we first prove a trace lemma (classical) also used in theorem 9.6.

Lemma A.1. Let u be function of L2(Ω) such that u,1 ∈ L2(Ω) and where
Ω = [0, T1]× [0, T2] is a domain of R2. Let Γ be a curve given by a diffeomorphism
φ of [0, T1] to [0, T2], such that φ(0) = 0:

Γ = {(y1, y2) ∈ Ω/y2 = φ(y1)}.

Then, the trace of u on Γ make sense in L2(Γ) and we have:∫ T1

0
|u(y1, φ−1(y1))|2dy1 =

∫ T2

0
|u(φ(y2), y2)|2|φ′(y2)|dy2

≤ |φ′|
[‖u‖L2(ΩT )

T2
+ ‖u,1‖L2(ΩT )

]
.

(.24)
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Proof. In a classical way, we prove the lemma for continuous functions and extend
it by continuity.

Let us define the trace of u as the restriction of u on the curve Γ, usually denoted
as γ0(u): with the change of variables t1 = φ(y2), we have:

‖γ0(u)‖2L2(Γ) =
∫ T1

0

|u(t1, φ−1(t1)|2dt1 =
∫ T2

0

|u(φ(y2), y2)|2|φ′(y2|dy2.

But,

u(φ(y2), y2) = u(y1, y2)−
∫ y1

φ(y2)

u,1(t, y2)dt,

consequently, we obtain:

∫ T1

0

|u(y1, φ−1(y1))|2dy1 ≤ |φ′|

∫ T2

0

|u(y1, y2)|2dy2 +
∫ T2

0

∣∣∣∣∣
∫ y1

φ(y2)

u,1(t, y2)dt

∣∣∣∣∣
2

dy2

 .
Integrating the last relation with respect to the variable y1, we obtain

T1

∫ T1

0

|u(y1, φ−1(y1))|2dy1 ≤ |φ′|
[
‖u‖L2(ΩT ) + T1‖u,1‖L2(ΩT )

]
.

In other words, we can extend the trace operator and dividing the last estimation
by T1, which proves the lemma. 2

Theorem A.2. (Variant of a Goursat problem): Let Ω = [0, T1] × [0, T2]
be a domain of R2. Let Γ be the curve of Ω defined by a diffeomorphism φ of [0, T1]
to [0, T2], such that φ(0) = 0:

Γ = {(y1, y2) ∈ Ω/y2 = φ(y1)}.

For any functions ψ1 ∈ L2[0, T1] and ψ2 ∈ L2[0, T2] there is a unique solution
(u1, u2) to the problem: {

u1,1 = a1
1u1 + a2

1u2

u2,2 = a1
2u1 + a2

2u2
in Ω (.25)

{
u1(0, y2) = ψ2(y2) ∀y2 ∈ [0, T2]
u2(y1, φ(y1)) = ψ1(y1)u1(y1, φ(y1)) ∀y1 ∈ [0, T1] (.26)

where the coefficients aαβ are smooth functions on Ω.

Proof. Let A be the operator defined for any couple of continuous functions on
Ω : A(u1, u2) = (v1, v2) with:

v1(y1, y2) =
∫ y1

0
aα1uα(t1, y2)dt1 + ψ2(y2)

v2(y1, y2) =
∫ y2

φ(y1)
aα2uα(y1, t2)dt2 + ψ1(y1)v1(y1, φ(y1)).

(.27)
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In a classical way, the integral operators in (.27) are extended by continuity into an
operator defined from the space L2 into L2.

It is clear that a solution of problem (.25)-(.26) is a fixed point of the operator
A, and reciprocally.

For any functions (ũ1, ũ2) and (ū1, ū2), we are going to show the estimate :

‖A(ũ1, ũ2)−A(ū1, ū2)‖L2) ≤ C‖(ū1, ū2)− (ū1, ū2)‖L2 ,

with a constant C depending on the domain Ω, so that A is a contraction for
sufficiently small domain Ω.

Let (v1, v2) = A(ũ1, ũ2) − A(ū1, ū2) and let (u1, u2) = (ũ1, ũ2) − (ū1, ū2), con-
sidering the first equation of (.27), there is a positive constant C such that :

‖v1‖2L2 ≤ CT1

[
‖u1‖2L2 + ‖u2‖2L2

]
, (.28)

where, here and in the sequel, the constant C depends only on coefficients aαβ and
on the functions ψ1, ψ2 and φ. In the sequel, C will not be necessarily the same at
each occurrence (here, we can take C = supΩ(aαβ) + sup[0,T1] |φ−1| × sup[0,t2] |ψ2|).

n
¯
par In the same way, considering the second equation of (.27), we have

‖v2‖2L2 ≤ CT2

[
‖u1‖2L2 + ‖u2‖2L2

]
+ sup

[0,T1]

|ψ1|2
∫ T2

0

dy2

∫ T1

0

|v1(y1, φ(y1))|2dy1,

(.29)
it follows, then, according to lemma 11.1:

‖v2‖2L2 ≤ CT2

[
‖u1‖2L2 + ‖u2‖2L2

]
+ C

[
‖v1‖2L2 + T2‖v1,1‖2L2

]
. (.30)

But, as v1,1 = aα1uα, we have the inequality:

‖v1,1‖2L2 ≤ CT2

[
‖u1‖2L2 + ‖u2‖2L2

]
.

Thus, combining the least inequality with (.28) and (.30), we finally have:

‖v2‖2L2 ≤ CT2

[
‖u1‖2L2 + ‖u2‖2L2

]
. (.31)

In other words, we have showed that the operator A is k-Lipschitz, with k
≤ C sup(T1, T2).

As k < 1 for any value of T1 or T2 sufficiently small, the existence and uniqueness
of a fixed point (and therefore a solution to the problem (.25)-(.26)) follows from
the classical fixed point lemma for contraction operators in Banach spaces. The
determination of the solution in the rest of the domain Ω is then given step by
step. 2
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